

CODE:- AG-7-3689
REGNO:-TMC -D/79/89/36

## General Instructions :

1. All question are compulsory.
2. The question paper consists of 29 questions divided into three sections A,B and C. Section - A comprises of 10 question of 1 mark each. Section - B comprises of 12 questions of 4 marks each and Section - C comprises of 7 questions of 6 marks each .
3. Question numbers 1 to 10 in Section - A are multiple choice questions where you are to select one correct option out of the given four.
4. There is no overall choice. However, internal choice has been provided in 2 question of four marks and 2 questions of six marks each. You have to attempt only one lf the alternatives in all such questions.
5. Use of calculator is not permitted.
6. Please check that this question paper contains 3 printed pages.
7. Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.

## सामान्य निर्देश :

1. सभी प्रश्न अनिवार्य हैं।
2. इस प्रश्न पत्र में 29 प्रश्न है, जो 3 खण्डों में अ, ब, व स है। खण्ड - अ में 10 प्रश्न हैं और प्रत्येक प्रश्न 1 अंक का है। खण्ड - ब में 12 प्रश्न हैं और प्रत्येक प्रश्न 4 अंको के हैं। खण्ड - स में 7 प्रश्न हैं और प्रत्येक प्रश्न 6 अंको का है।
3. प्रश्न संख्या 1 से 10 बहुविकल्पीय प्रश्न हैं। दिए गए चार विकल्पों में से एक सही विकल्प चुनें।
4. इसमें कोई भी सर्वोपरि विकल्प नहीं है, लेकिन आंतरिक विकल्प 2 प्रश्न 4 अंको में और 2 प्रश्न 6 अंको में दिए गए हैं। आप दिए गए विकल्पों में से एक विकल्प का चयन करें।
5. कैलकुलेटर का प्रयोग वर्जित हैं ।
6. कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 3 हैं।
7. प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें।

## Pre-Board Examination 2010-11

Time: 3 Hours
Maximum Marks : 100
Total No. Of Pages :3

अधिकतम समय : 3
अधिकतम अंक : 100
कुल पृष्ठों की संख्या : 3

CLASS - XII

## CBSE

MATHEMATICS
Section A

| Q. 1 | Find the value of $\tan ^{-1}(\sqrt{3})-\sec ^{-1}(-2)$. Ans $=\frac{-\pi}{3}$ |  |
| :---: | :---: | :---: |
| Q. 2 | In figure (a square), identify the following vectors.(i) Coinitial (ii) Equal (iii)Collinear but not <br> Ans. (i) $a \& d,(i i) b \& d,(i i i) a \& c$ |  |

TMC/D/79/89
1

## P.T.O.

Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony
Ph. :2337615; 4010685®, $92022217922630601(\mathbf{O})$ Mobile : $9425109601 ; 9907757815(\mathbf{P}) ; \mathbf{9 3 0 0 6 1 8 5 2 1 ; 9 4 2 5 1 1 0 8 6 0 ( O ) ; 9 9 9 3 4 6 1 5 2 3 ; 9 4 2 5 7 7 2 1 6 4}$ PREMIER INSTITUTE for $\mathrm{X}, \mathrm{XI} \& \mathrm{XII}$.© publication of any part of this paper is strictly prohibited..

Visit us at : http://www. targetmathematic.com; Email:agyat99@gmail.com.

## TARGET MATHEMATICS by:- AGYAT GUPTA

| Q. 3 | Find the slope of the tangent to the curve $x=t^{2}+3 t-8, y=2 t^{2}-2 t-5$ at the point. $2,-1$ ) Ans $=\frac{6}{7}$ |
| :---: | :---: |
| Q. 4 | If $\vec{a}=2 \hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=-\hat{i}+2 \hat{j}+\hat{k}$ and $\vec{c}=3 \hat{i}+\hat{j}$ are such that $\vec{a}+\lambda \vec{b}$ is perpendicular to $\vec{c}$, then find the value of $\lambda$. Ans $\lambda=8$ |
| Q. 5 | If $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be defined as $\mathrm{f}(\mathrm{x})=\frac{3 x+7}{9}$, then find $f^{-1}(x)$. Ans $f^{-1}(x)=\frac{9 x-7}{3}$. |
| Q. 6 | Let relation $R=\{(x, y) \in w \times w: y=2 x-4\}$. If ( $\mathrm{a},-2$ ) and $\left(4, b^{2}\right)$ belong to relation R , find the value of a and b . Ans. $\mathrm{a}=1, \mathrm{~b}=2$ |
| Q. 7 | Find values of $k$ if area of triangle is 4 square units and vertices are (k,0),(4,0),(0,2). Ans k=0,8 |
| Q. 8 | The number of all possible matrices of order $3 \times 3$ with each entry 0 or 1. Ans $=2^{9}$ |
| Q. 9 | Find the total number of one one function from set A to A if $\mathrm{A}=\{1,2,3,4\}$. Ans. 4 ! $=24$ |
| Q. 10 | If the points $(1,1, \mathrm{p})$ and $(-3,0,1)$ be equidistant from the plane $\vec{r} \cdot(3 \hat{i}+4 \hat{j}-12 \hat{k})+13=0$, then find the value of p . Ans $p=1, \frac{7}{3}$ |
|  | Section B |
| Q. 11 | Show that the curve $y^{2}=8 x \& 2 x^{2}+y^{2}=10$ intersect orthogonally at the point $(1,2 \sqrt{2})$. Ans $m_{1} \times m_{2}=-1$ |
| Q. 12 | If $\vec{a}, \vec{b}, \vec{c}$ are the position vectors of the vertices $\mathrm{A}, \mathrm{B}, \mathrm{C}$ of a $\triangle \mathrm{ABC}$ respectively. Find an expression for the area of $\triangle \mathrm{ABC}$ and hence deduce the condition for the points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ to be collinear. $\text { areaof } \triangle A B C=\frac{1}{2}\|\overrightarrow{A B} \times \overrightarrow{B C}\| \Rightarrow A(\triangle A B C)=0 \therefore \vec{b} \times \vec{c}+\vec{c} \times \vec{a}+\vec{a} \times \vec{b}=0$ |
| Q. 13 | Evaluate: $\int e^{x} \operatorname{Sin}^{2} 4 x d x$. <br> Ans $\frac{e^{x}}{2}-\frac{e^{x} \cos 8 x}{130}-\frac{4 e^{x} \sin 8 x}{65}$ <br> OR <br> Evaluate : $\int e^{x}\left(\frac{x^{2}+1}{(x+1)^{2}}\right) d x$. Ans $e^{x}-\frac{2 e^{x}}{x+1}$ |
| Q. 14 | Find all point of discontinuity of f , where f is defined as following : $f(x)=\left\{\begin{array}{cc}\|x\|+3 & i f x \leq-3 \\ -2 x & -3<x<3 \\ 6 x+2 & \text { ifx } x\end{array}\right\}$. Ans $f(x)=\left\{\begin{array}{cc}-x+3 & x \leq-3 \\ -2 x & -3<x<3 \\ 6 x+2 & x \geq 3\end{array}\right\} f(\mathbf{x})$ is continous at $\mathbf{x}=-3$ Whe ; RHL=LHL = FUNCTIONAL VALUE $=6 \& f(x)$ is not continous at $x=3 ;$ RHL $=20 \& L H L=-6$ |
| Q. 15 | Show that the following differential equation is homogeneous, and then solve it : $y d x+x \log \left(\frac{y}{x}\right) d y-2 x d y=0 . \text { Ans }\left(1-\log \frac{y}{x}\right)=y+c$ |
| Q. 16 | The volume of spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of balloon after t seconds. Ans $r=(63 t+27)^{\frac{1}{3}}$ |

## OR

|  | OR <br> Find the particular solution of the differential equation $\frac{d y}{d x}+y \cot x=2 x+x^{2} \cot x(x \neq 0)$ given that $y=0$ when $x=\frac{\pi}{2}$. Ans $y \sin x=x^{2} \sin x-\frac{\pi}{4}$ |
| :---: | :---: |
| Q. 17 | Prove the following : $\cos \left[\tan ^{-1}\left\{\sin \left(\cot ^{-1} x\right)\right\}\right]=\sqrt{\frac{1+x^{2}}{2+x^{2}}}$. |
| Q. 18 | Prove that: $\left\|\begin{array}{ccc}(y+z)^{2} & x y & z x \\ x y & (x+z)^{2} & y z \\ x z & y z & (x+y)^{2}\end{array}\right\|=2 x y z(x+y+z)^{3}$. |
| Q. 19 | The probability of India wining a test match against West Indies is $1 / 3$. Assuming independence from match to match .Find the probability that in a 5 match series India's second win occurs at the third test. Ans $\mathrm{p}=1 / 3 ; \mathrm{q}=2 / 3$ Required probability; $={ }^{2} c_{1} \times\left(\frac{1}{3}\right) \times\left(\frac{2}{3}\right) \times\left(\frac{1}{3}\right)=\frac{4}{27}$ <br> OR <br> A coin is biased so that the head is 3 times as likely to occur as tail. If the coin is tossed three times ,find the probability distribution of number of tails.Ans $n=3, \mathrm{P}(\mathrm{H})=3 / 4, \mathrm{P}(\mathrm{T})=1 / 4$ |
| Q. 20 | Discuss the relation R in the set of real number, defined as $R=\left\{(a, b): a \leq b^{3}\right\}$ is Reflexive , Symmetric \& Transitive . Ans ; Not reflexive \&; symmetric BUT transitive |
| Q. 21 | If $y=\frac{x \sin ^{-1} x}{\sqrt{\left(1-x^{2}\right)}}+\log \sqrt{1-x^{2}}$. Prove that $\frac{d y}{d x}=\frac{\sin ^{-1} x}{\left(1-x^{2}\right)^{3 / 2}}$. <br> OR <br> Prove that the derivative of $\tan ^{-1}\left(\frac{\sqrt{1+x^{2}}-1}{x}\right)$ with respect to $\tan ^{-1}\left(\frac{2 x \sqrt{1-x^{2}}}{1-2 x^{2}}\right)$ at $x=0$, is $1 / 4$. |
| Q. 22 | Find the equation of the perpendicular drawn from the point $\mathrm{P}(2,4,-1)$ to the line $\frac{x+5}{1}=\frac{y+3}{4}=\frac{6-z}{9}$. Ans foot of prependicular is $(-4,1,-3) \&$ Equation of perpendiculaire $\frac{x-2}{6}=\frac{y-4}{3}=\frac{z+1}{2}$ or $\frac{x+4}{6}=\frac{y-1}{3}=\frac{z+3}{2}$ |
|  | Section C |
| Q. 23 | If ${ }_{A^{-1}}=\left[\begin{array}{ccc}3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{ccc}1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1\end{array}\right]$ find $(A B)^{-1}$ Ans $(A B)^{-1}=\left[\begin{array}{ccc}9 & -3 & 5 \\ -2 & 1 & 0 \\ 1 & 0 & 2\end{array}\right], B^{-1}=\left[\begin{array}{lll}3 & 2 & 6 \\ 1 & 1 & 2 \\ 2 & 2 & 5\end{array}\right]$ |
| Q. 24 | A toy manufacturers produce two types of dolls ; a basic version doll A and deluxe version doll B. Each doll of type B takes twice as long to produce as one doll of type A. The company have time to make a maximum of 2000 , dolls of type A per day , the supply of plastic is sufficient to produce 1500 dolls per day and each type requires equal amount of it.The deluxe version i.e. type B requires a fancy dress of which there are only 600 per day available. If the company makes profit of ₹ 3 and ₹ 5 per doll respectively on doll A and B, how many of each should be produced weekly in order to maximize the profit? Solve it by graphical method. Ans : $\mathrm{z}=3 \mathrm{x}+5 \mathrm{y}$ $x+2 y \leq 2000, x+y \leq 1500, y \leq 600 ; x, y \geq 0$. corner points : $(0,0) ;(1500,0)(1000,500)(800$, $600) \&(0,600)$ Thus Z is maxmium at $(1000,500)$ and maximum value is 5500 . |

## TMC/D/79/89

## 3

```
                                    P.T.O.
```

TARGET MATHEMATICS by:- AGYAT GUPTA

| Q. 25 | Evaluate: $\qquad$ Ans. $\frac{\pi^{2}}{2 a \sqrt{a^{2}-1}}$ |
| :---: | :---: |
| Q. 26 | Using integration, find the area of the triangle bounded by the lines $x+2 y=2, y-x=1$ and $2 x+y$ $=7 \text {. Ans : }$  $A_{1}=\int_{-1}^{3} \frac{7-y}{2} d y ; A_{2}=\int_{1}^{3}(1+y) d y ; A_{3}=\int_{-1}^{1}(2-2 y) d y \Rightarrow A_{1}-A_{2}-A_{3}=6 u n i t^{2}$ |
| Q. 27 | A, B and C play game and chances of their winning it in an attempt are $2 / 3,1 / 2$ and $1 / 4$ respectively. A has the first chance, followed by B and then by C. This cycle is repeated till one of them wins the game. Find their respective chances of winning the game. Ans $A=\frac{16}{21}, B=\frac{4}{21}, C=\frac{1}{21}$ <br> OR <br> How many time must a man toss a fair coin, so that the probability of having at least one head is more than $80 \%$ ? Ans $p=1 / 2 ; q=1 / 2$. let $n$ denote the number of trials $.1-p(x=0)>80 \%$. $\left(\frac{1}{2}\right)^{n}<\frac{1}{5} \therefore n \geq 3$ There fore the coin be tossed 3 times. |
| Q. 28 | State when the line $\vec{r}=\vec{a}+\lambda \vec{b}$ is a parallel to the plane $\vec{r} \cdot \vec{n}=d$. Show that the line $\vec{r}=(\hat{i}+\hat{j})+\lambda(2 \hat{i}+\hat{j}+4 \hat{k})$ is parallel to the plane $\vec{r} \cdot(-2 \hat{i}+\hat{k})=5$. Also find the distance between the line and the plane. Ans Required Condition for line // to plane is $\vec{b} \bullet \vec{n}=0$ and distance between plane and line $\frac{7}{\sqrt{5}}$ |
| Q. 29 | Find the shortest distance of the point $(0, c)$ from the parabola $y=x^{2}$, where $0 \leq c \leq 5$. Ans $\text { S.D. }=\frac{1}{2} \sqrt{4 c-1}$ <br> Or <br> Prove that the radius of the right circular cylinder of greatest curved surface area which can be inscribed in a given cone is half of that of the cone. Ans $\mathrm{H}=\mathrm{h}-\mathrm{x} \cot \alpha$ $C S A=f(x)=2 \pi R H=2 \pi x(h-x \cot \alpha)$ |
|  | —___X_-_-_ |
|  | "Hard working is only the investment that never fails " |

